Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Nazan Ocak, ${ }^{\text {a }}$, Samil Ișık, ${ }^{\text {a }}$
Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {b }}$
and Ismail Erdem
Gümrükçüoğlu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and
Sciences, Ondokuz Mayís University, TR-55139
Kurupelit-Samsun, Turkey, and ${ }^{\text {b }}$ Department of
Chemistry, Faculty of Arts and Sciences,
Ondokuz Mayís University, TR-55139
Kurupelit-Samsun, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.036$
$w R$ factor $=0.084$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2,7-Bis(3,4-dicyanophenoxy)naphthalene

The molecule of the title compound, 4,4'-naphthalene-2,7-dioxydibenzene-1,2-dicarbonitrile, $\mathrm{C}_{26} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$, has an asymmetric conformation, with the two benzene rings approximately orthogonal to each other [dihedral angle $=77.18(5)^{\circ}$] and forming unequal dihedral angles of 55.14 (5) and $67.62(5)^{\circ}$ with the naphthalene plane. The structure is stabilized by relatively weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, linking the molecules into infinite chains running along the diagonal of the $a c$ plane of the unit cell.

Comment

The title compound, (I), belongs to the family of diphthalonitrile derivatives, which are used as starting materials for network polymeric phthalocyanines and high-performance aromatic polymers (McKeown, 1998; Takekoshi, 1987). Phthalocyanines represent an interesting class of compounds with increasingly diverse industrial and biomedical applications including photosensitization, linear optics, catalysis, liquid crystals and gas sensing (McKeown, 1998; Leznoff \& Lever, 1989-1996). Polymeric phthalocyanines have been reported to be used as dyes and industrial high-technology materials and are also of interest because of their high thermostability (Leznoff \& Lever, 1989-1996).

(I)

An ORTEPIII (Burnett \& Johnson, 1996) plot of the molecule of (I) is shown in Fig. 1. Considering its two-

Figure 1
An ORTEPIII (Burnett \& Johnson, 1996) drawing of the title compound, showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Received 21 January 2004 Accepted 16 February 2004 Online 28 February 2004
dimensional representation, the molecule could have had $C_{2 v}$ symmetry. This is certainly not the case in practice, as the naphthalene moiety is planar to within $0.03 \AA$ and forms dihedral angles of 55.14 (5) and 67.62 (5) ${ }^{\circ}$ with the planes of aromatic rings $\mathrm{C} 3-\mathrm{C} 8$ and $\mathrm{C} 19-\mathrm{C} 24$, respectively; the benzene rings form a dihedral angle of $77.18(5)^{\circ}$ with each other.

The crystal structure of (I) is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions, namely $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{~N} 4^{\mathrm{i}}$ and $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 3^{\mathrm{ii}}$ [symmetry codes: (i) $1-x,-y,-z$; (ii) $x+\frac{1}{2}$, $-y-\frac{1}{2}, z+\frac{1}{2}$], which link the molecules into infinite chains stretching along the diagonal of the $a c$ plane of the unit cell (Fig. 2 and Table 2).

Experimental

2,7-Naphthalenediol ($0.46 \mathrm{~g}, 2.88 \mathrm{mmol}$) and 4-nitrophthalodinitrile were dissolved in dry dimethylsulfoxide (40 ml) with stirring under N_{2}. Dry fine-powdered potassium carbonate ($1.0 \mathrm{~g}, 7.24 \mathrm{mmol}$) was added in portions $(10 \times 1 \mathrm{mmol})$ every 10 min . The reaction mixture was stirred for 48 h at room temperature and poured into ice-water $(150 \mathrm{~g})$. The product was filtered off and washed with NaOH solution $(10 \% w / w)$ and water until the filtrate was neutral. The product was then refluxed in ethanol, filtered and dried (yield $1.08 \mathrm{~g}, 91.01 \%$). Single crystals were obtained from dimethylformamide at room temperature by slow evaporation (m.p. 464 K). Elemental analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C 75.72, H 2.93, N 13.56%; found: C 75.60, H 2.86, N 13.60\%; IR (cm ${ }^{-1}$): 3093-3041 ($\mathrm{Ar}-\mathrm{CH}_{2}$), 2229 (CN), 1631, $1595,1562,1483,1458,1435,1415,1369,1277,1244,1203,1165,1138$, 1086, 964, 903, 870, 839, 725.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=412.40$
Monoclinic, $P 2_{1 / n} / n$
$a=8.3592$ (10) \AA
$b=7.5300$ (5) \AA
$c=31.368$ (3) A
$\beta=97.400(9)^{\circ}$
$V=1958.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.399 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8818
\quad reflections
$\theta=2.0-25.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colourless
$0.50 \times 0.31 \times 0.07 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: none
21357 measured reflections
3856 independent reflections 1929 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.084$
$S=0.77$
3856 reflections
290 parameters
H -atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.064 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-9 \rightarrow 9 \\
& l=-38 \rightarrow 38
\end{aligned}
$$

[^0]

Figure 2
The crystal packing of the title compound, with the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions shown as dashed lines.

Table 1
Selected bond lengths (Å).

O1-C5	$1.376(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.142(2)$
O1-C9	$1.405(2)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.139(2)$
O2-C15	$1.3961(19)$	$\mathrm{N} 3-\mathrm{C} 25$	$1.144(2)$
O2-C19	$1.3730(19)$	$\mathrm{N} 4-\mathrm{C} 26$	$1.136(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{~N} 4^{\mathrm{i}}$	0.93	2.56	$3.397(2)$	151
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N}^{3 i}$	0.93	2.62	$3.486(3)$	155

Symmetry codes: (i) $1-x,-y,-z$; (ii) $\frac{1}{2}+x,-\frac{1}{2}-y, \frac{1}{2}+z$.
The H atoms were positioned geometrically and included in the refinement in a riding-model approximation, with aromatic $\mathrm{C}-\mathrm{H}$ distances fixed at $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols 1, 2, 3 \& 4. Weinheim, New York: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and
Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Takekoshi, T. (1987). Polym. J. 19, 191-202.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0424 P)^{2}\right]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\text {max }}=0.001$
 $\Delta \rho_{\text {max }}=0.13$ e \AA^{-3}
 $\Delta \rho_{\text {min }}=-0.13 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.0097 (8)

